
LA-UR-17-31022
Approved for public release; distribution is unlimited.

Title: Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in
CGMF

Author(s): Carter, Austin Lewis
Talou, Patrick
Stetcu, Ionel
Kiedrowski, Brian Christopher
Jaffke, Patrick John

Intended for: Report

Issued: 2017-12-06

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Sensitivity Analysis of Cf-252(sf) Neutron and
Gamma Observables in CGMF
	

Austin	Cartera,b,	Patrick	Talou	b,	Ionel	Stetcu	b,	Patrick	Jaffke	b,	Brian	Kiedrowskia	

aUniversity	of	Michigan,	Nuclear	Engineering	and	Radiological	Sciences,	2355	Bonisteel	Blvd.,	1906	
Cooley	Bldg.,	Ann	Arbor,	Michigan	48109	

bLos	Alamos	National	Laboratory,	T-2	Nuclear	Theory	Group,	Los	Alamos,	New	Mexico	87545	

	

Abstract - CGMF	is	a	Monte	Carlo	code	that	simulates	the	decay	of	primary	fission	fragments	
by	emission	of	neutrons	and	gamma	rays,	according	to	the	Hauser-Feshbach	equations.	As	 the	
CGMF	code	was	recently	integrated	into	the	MCNP6.2	transport	code,	great	emphasis	has	been	
placed	 on	 providing	 optimal	 parameters	 to	 CGMF	 such	 that	 many	 different	 observables	 are	
accurately	 represented.	 Of	 these	 observables,	 the	 prompt	 neutron	 spectrum,	 prompt	 neutron	
multiplicity,	prompt	gamma	spectrum,	and	prompt	gamma	multiplicity	are	crucial	 for	accurate	
transport	 simulations	 of	 criticality	 and	 nonproliferation	 applications.	 This	 contribution	 to	 the	
ongoing	 efforts	 to	 improve	 CGMF	 presents	 a	 study	 of	 the	 sensitivity	 of	 various	 neutron	 and	
gamma	observables	to	several	input	parameters	for	Californium-252	spontaneous	fission.	Among	
the	most	 influential	 parameters	 are	 those	 that	 affect	 the	 input	 yield	 distributions	 in	 fragment	
mass	and	total	kinetic	energy	(TKE).	A	new	scheme	for	representing	Y(A,TKE)	was	implemented	in	
CGMF	using	 three	 fission	modes,	 S1,	 S2	 and	 SL.	 The	 sensitivity	 profiles	were	 calculated	 for	17	
total	parameters,	which	show	that	the	neutron	multiplicity	distribution	is	strongly	affected	by	the	
TKE	distribution	of	 the	 fragments.	The	 total	 excitation	energy	 (TXE)	of	 the	 fragments	 is	 shared	
according	 to	 a	 parameter	 RT,	 which	 is	 defined	 as	 the	 ratio	 of	 the	 light	 to	 heavy	 initial	
temperatures.	The	sensitivity	profile	of	the	neutron	multiplicity	shows	a	second	order	effect	of	RT	
on	 the	 mean	 neutron	 multiplicity.	 A	 final	 sensitivity	 profile	 was	 produced	 for	 the	 parameter	
alpha,	which	affects	 the	spin	of	 the	 fragments.	Higher	values	of	alpha	 lead	to	higher	 fragment	
spins,	 which	 inhibit	 the	 emission	 of	 neutrons.	 Understanding	 the	 sensitivity	 of	 the	 prompt	
neutron	and	gamma	observables	 to	 the	many	CGMF	 input	parameters	provides	a	platform	 for	
the	optimization	of	these	parameters.	
	

1. INTRODUCTION
Knowledge	of	correlations	between	fission	observables	is	essential	for	high-fidelity	simulations	of	

the	complex	fission	process	where	such	correlations	play	an	important	role.	These	simulations	are	
crucial	for	many	applications	including	criticality	safety,	nuclear	safeguards	and	non-proliferation,	
nuclear	energy,	nuclear	threat	reduction	and	response,	radiation	detection	and	measurement,	radiation	
health	protection,	stockpile	stewardship,	etc.	Hence,	there	has	been	a	growing	interest	in	fission	science	
in	recent	years,	demonstrated	by	increasing	research	in	experimental	fission	facilities	and	detectors,	and	
robust	computer	simulation	tools	to	test	theoretical	fission	models.		

The	Cascading	Gamma	ray	Multiplicity	with	Fission	(CGMF)	code,	developed	at	Los	Alamos	National	
Laboratory,	is	a	state-of-the-art	nuclear	fission	code	that	uses	the	Hauser-Feshbach	statistical	theory	of	
nuclear	reactions	to	simulate	fission	events.	CGMF	has	recently	been	integrated	into	the	MCNP6.2	
transport	code,	providing	correlations	that	were	previously	neglected	in	observables.	In	previous	
versions	of	MCNP,	fission	events	were	treated	with	ENDF/B	nuclear	data	tables,	with	each	distribution	
sampled	independently.	Thus,	reaction	channels	and	outgoing	products	were	uncorrelated,	seeing	that	
multi-dimensional	distributions	are	ignored.		 	

1.A. CGMF Background Theory
CGMF	provides	a	much	more	accurate	treatment	of	fission	events,	however	the	code	requires	a	

significant	level	of	optimization	to	reproduce	experimental	data.	To	initiate	a	fission	event,	CGMF	
samples	fission	fragment	mass	(A),	charge	(Z),	Total	Kinetic	Energy	(TKE),	spin	(J),	and	parity	(𝜋)	from	
experimental	data	or	systematics,	depending	on	the	variable.	This	paper	demonstrates	that	responses	of	
particular	interest,	those	related	to	neutron	and	𝛾	ray	multiplicities	and	spectra,	are	highly	sensitive	to	
the	yield	distribution	of	mass	and	TKE,	Y(A,TKE)	(Sec.	5).	Also	shown	are	the	effects	of	the	parameter	𝛼,	
which	influences	the	competition	between	emission	of	𝛾	rays	and	neutrons	through	altering	the	spin	
distribution	(Sec.	7).	The	total	excitation	energy	of	the	fragments	(TXE)	is	found	with	the	Q-value	of	the	
reaction,	the	incident	particle	energy,	the	neutron	binding	energy,	and	the	total	kinetic	energy	(Sec.	6).	
The	parameter	RT	defines	the	sharing	of	the	total	excitation	energy	between	fragments	and	has	
significant	impacts	on	the	neutron	multiplicity	and	spectrum.		After	the	initial	fragment	properties	are	
sampled,	CGMF	performs	a	Monte	Carlo	simulation	of	the	de-excitation	of	the	fission	fragments.	Using	
the	excitation	energy	of	the	fragments,	the	probabilities	of	neutron	and	𝛾	ray	emission	are	calculated.	A	
specific	decay	path	is	chosen	and	the	de-excitation	proceeds	in	this	manner	until	the	fragments	reach	a	
ground	or	metastable	state.		

2. CGMF Output and Convergence
Upon	completion	of	each	fission	event,	CGMF	records	data	for	the	event	in	a	“histories-

vectors.CGMF”	file.	An	example	of	this	file	is	shown	in	App.	A.	The	first	line	of	data	for	each	event	
contains	the	light	fragment	mass,	charge,	excitation	energy,	spin,	parity,	kinetic	energy,	neutron	
multiplicity,	𝛾	ray	multiplicity,	and	internal	conversion	multiplicity.	The	second	line	contains	the	
fragment	momentum	vector,	in	center	of	mass	frame	and	then	lab	frame.	If	the	neutron	multiplicity	is	
non-zero,	the	third	line	contains	each	neutron’s	momentum	vector	and	energy	in	center	of	mass	frame	
and	then	lab	frame.	If	the	𝛾	ray	multiplicity	is	non-zero,	the	fourth	line	contains	each	𝛾	ray	momentum	
vector	and	energy	likewise	in	center	of	mass	frame	and	then	lab	frame.	The	same	data	is	then	shown	for	
the	heavy	fragment,	immediately	after	the	corresponding	light	fragment.	

Part	of	this	work,	in	analyzing	the	sensitivities	of	specific	responses	to	input	parameters,	was	to	
produce	an	efficient	method	to	compile	the	CGMF	output	data	into	a	concise	summary	file.	In	the	
current	configuration	of	the	summary	file,	the	data	from	the	“histories-vectors.CGMF”	is	summarized	
with	20	observables.	Those	observables	are	presented	in	Sec.	5,	and	an	example	summary	file	is	
contained	in	App.	B.	

Another	significant	analysis	of	CGMF	computation	was	finding	a	minimum	number	of	fission	events,	
for	which	a	set	of	responses	converge	within	a	specified	tolerance	level.	The	Cf-252(sf)	observables	used	
in	this	analysis	are	the	mean	neutron	multiplicity	(𝜈),	the	mean	𝛾	ray	multiplicity	(𝑁!),	each	of	their	

second	and	third	factorial	moments,	as	well	as	mean	neutron	and	𝛾	ray	energies.	Tolerances	for	each	
were	selected	according	to	their	respective	uncertainties	according	to	Ref.	1.	Figure	1	shows	that	after	
50,000	events,	all	responses	fall	within	the	tolerances.	Thus	in	future	calculations,	at	least	50,000	events	
were	simulated.	

	 	

Fig.	1.	Convergence	criteria	for	eight	CGMF	responses	

3. Cf-252(sf) Average Neutron Mult ipl ic ity 𝝂
Reproducing the average neutron multiplicity is vitally important for criticality safety applications. As

a first pass to doing sensitivity calculations with CGMF, an analysis was performed to analyze the effects
of the average TKE (𝑇𝐾𝐸) on 𝜈 for Cf-252(sf). This reaction was used because there exists a significant
amount of good experimental data, and notably 𝜈 has a very small evaluated uncertainty (0.13%). Figure
2 shows the current version of CGMF strongly over predicts 𝜈, and there is a linear correlation between 𝜈
and 𝑇𝐾𝐸. To achieve 𝜈 = 3.756 (Ref. 1), 𝑇𝐾𝐸 = 186.3 𝑀𝑒𝑉, which is inside the evaluated uncertainty
(Ref. 2). This analysis shows the strong effects the value of 𝑇𝐾𝐸 has on 𝜈.

Fig.	2.	Sensitivity	of 𝜈	on 𝑇𝐾𝐸	for	Cf-252(sf)	

4. Brosa Modes Model for Y(A,TKE)
Previous	versions	of	CGMF	have	relied	on	large,	tabulated	data	files	for	the	fission	fragment	yields	in	

mass	and	TKE.	Brosa	et	al.	(Ref.	3)	propose	that	Y(A)	and	Y(TKE)	can	be	decomposed	into	modes	or	
“fission	channels,	thereby	creating	a	systematic	way	to	sample	the	fragment	mass	and	TKE.	Applying	this	
systematic	method	would	allow	for	compound	nuclei	with	unknown	yield	distributions	to	be	sampled	
and	the	fragments	to	be	propagated	through	CGMF.	Thus	CGMF	can	transition	to	become	a	predictive	
fission	event	generator	for	compound	nuclei	with	no	available	fission	data.	

In	the	Brosa	Modes	model,	the	Y(A)	distribution	is	decomposed	into	a	sum	of	an	arbitrary	number	of	
modes,	where	the	mass	yield	of	each	mode	is	

𝑌! 𝐴 =

𝑤!

8𝜋𝜎!,!!
𝑒𝑥𝑝 −

𝐴 − 𝐴!!

2𝜎!,!!
+ 𝑒𝑥𝑝 −

𝐴 − 𝐴!" + 𝐴!!

2𝜎!,!!
 .	 (1)	

In	Eq.	1,		𝑤!	is	the	weight	of	the	mode,	𝐴!!	is	the	mean	heavy	fragment	mass,	and	𝜎!,!! 	is	the	variance	
of	the	heavy	side	of	the	distribution.	As	the	pre-neutron	emission	Y(A)	distribution	is	perfectly	
symmetric	around	half	the	mass	of	the	compound	nucleus,	Y(A)	can	be	treated	as	a	sum	of	two	Gaussian	
distributions	centered	on 𝐴!!	and 𝐴!" − 𝐴!!.	The	fragment	mass	distribution	with	component	modes	S1,	
S2,	and	SL	is	shown	in	Fig.	3.	The	S1	and	S2	are	standard	asymmetric	modes,	and	the	SL	mode	is	the	
Super	Long	symmetric	mode.	It	can	be	seen	using	that	the	input	parameters	from	Ref.	3	leads	to	

significant	deviations	in	the	peaks	and	wings	of	the	distribution.	This	effect	is	mitigated	with	a	 !
!

!"#
	

optimization	in	section	4.A.	

	

Fig.	3.	Y(A)	distribution	for	Cf-252(sf)	decomposed	into	S1,	S2	and	SL	modes	

In	order	to	produce	the	two	dimensional	Y(A,TKE),	a	distribution	of	TKE	given	a	fragment	mass	was	
produced	by	Brosa	et	al	(Ref.	3).	The	Y(TKE|A)	distribution	is	not	fit	with	Gaussian	shapes,	as	the	
function	is	significantly	skewed	from	a	Gaussian	at	the	tails.	Instead,	the	TKE	is	a	function	of	the	distance	
between	the	centroids	of	the	nascent	fragments, 𝐷,	according	to	

𝑇𝐾𝐸 =

𝑍!𝑍!𝑒!

𝐷
 ,	 (2)	

	

where 𝑍! 	and 𝑍!	are	the	charge	numbers	of	the	fragments.	Using	a	shifted	distance	between	centroids,	

𝑇 = 𝐷 − 𝑑!"#,	and	the	uniform-charge-density	relation, 𝑍 = !!"
!!"

𝐴,		

𝑇! 𝐴 =

𝑍!"
𝐴!"

!
𝐴!" − 𝐴 𝐴𝑒!

𝑇𝐾𝐸
− 𝑑!"#! ,	

(3)	

	

and	the	modal	TKE|A	distribution	is	

𝑌! 𝑇𝐾𝐸|𝐴 =

200
𝑇𝐾𝐸

!
𝑒𝑥𝑝 2

𝑑!"#! − 𝑑!"#!

𝑑!"#! −
𝑇! 𝐴
𝑑!"#! −

𝑑!"#! − 𝑑!"#! !

𝑇! 𝐴 𝑑!"#! .	 (4)	

	

In	this	distribution,	𝑑!"#! 	is	the	half-length	between	fragment	centroids	with	the	most	favorable	
potential	energy	to	cause	scission,	𝑑!"#! 	is	the	half-length	below	which	scission	will	not	occur,	𝑑!"#! 	is	the	
length	constant	describing	the	exponential	decay	of	scission	probability,	and	𝑚	denotes	the	mode.	Then	
the	yield	in	mass	and	TKE	is		

 𝑌 𝐴,𝑇𝐾𝐸 = 𝑌! 𝑇𝐾𝐸|𝐴
!

𝑌! 𝐴 .	 (5)	

	

With	six	parameters	for	each	mode,	𝑤!,	𝐴!!,	𝜎!,!
 ,	𝑑!"#! ,	𝑑!"#! ,	𝑑!"#! ,	and	three	modes	for	Cf-252(sf),	

there	are	18	parameters	necessary	to	create	Y(A,TKE).	As	the	𝑆𝐿	mode	is	symmetric	about	the	half	mass	
of	the	compound	nucleus,	𝐴!!!	remains	constant	at	126	and	the	number	of	adjustable	parameters	is	
reduced	to	17.	For	the	weights,	the	sum	of	the	three	weights	is	unity,	however	there	are	three	possible	
combinations	of	adjusting	one	weight	and	compensating	with	another.	Thus	this	constraint	does	not	
eliminate	a	degree	of	freedom.	

4.A. Optimization of Y(A,TKE) Parameters to Fit Data
A	sequential	optimization	scheme	was	implemented	to	better	fit	the	Y(A,TKE)	Brosa	Modes	model	to	

experimental	yield	data	(Ref.	1).	The	optimization	tool	used	was	scipy.optimize.minimize	(Ref.	4)	to	

minimize	the	 !
!

!"#
	for	the	mass	distribution,	the	TKE	distribution,	and	Y(A,TKE).	As	this	is	a	hyper-

dimensional	optimization	problem,	being	fit	to	a	very	large	data	set,	the	optimization	was	broken	into	
components	to	reduce	computation	time	and	to	optimize	parameters	separately.	The	steps	of	the	
sequential	optimization	are	shown	in	Table	1.	It	is	important	to	note	that	in	the	first	step,	where	all	
parameters	are	being	optimized,	a	predefined	number	of	iterations	was	selected,	which	severely	
constrained	the	optimization,	and	only	slightly	modified	the	most	sensitive	parameters.	Thus,	a	minimal	
!!

!"#
	was	not	found	for	this	step.	

TABLE	1	

	Y(A,TKE)	Brosa	Modes	Sequential	Optimization	Scheme	

Optimization	Step	 Updated	Parameters	 #	Iterations	

1. Minimize	 !
!

!"#
	for	Y(A,TKE)	 𝑤!,	𝐴!!,	𝜎!,!

 ,	𝑑!"#! ,	𝑑!"#! ,	𝑑!"#! 	
For	all	3	modes	

30

2. Minimize	 !
!

!"#
	for	Y(A)	using	S2	mode	 𝑤!!,	𝐴!!!,	𝜎!,!!

 	 3	

3. Minimize	 !
!

!"#
	for	Y(A)	using	S1	mode	 𝑤!!,	𝐴!!!,	𝜎!,!!

 	 4	

4. Minimize	 !
!

!"#
	for	Y(A)	using	SL	mode	 𝑤!",	𝐴!!",	𝜎!,!"

 	 6	

5. Minimize	 !
!

!"#
	for	Y(TKE)	using	S2	mode	 𝑤!!,	𝑑!"#!! ,	𝑑!"#!! ,	𝑑!"#!! 	 13	

6. Minimize	 !
!

!"#
	for	Y(TKE)	using	S1	mode	 𝑤!!,	𝑑!"#!! ,	𝑑!"#!! ,	𝑑!"#!! 	 9	

7. Minimize	 !
!

!"#
	for	Y(TKE)	using	SL	mode	 𝑤!",	𝑑!"#!" ,	𝑑!"#!" ,	𝑑!"#!" 	 13	

8. Minimize	 !
!

!"#
	for	Y(A,TKE)	 𝑤!!,	𝑤!!,	𝑤!"	 14	

The optimized values for the parameters are shown in Table 2. A comparison between the experimental
data, Brosa Modes fit and the residuals for Y(A,TKE) is shown in Fig. 4. Finally, the fit for Y(A) and Y(TKE) is
shown in Fig. 5. Figure 5 demonstrates the considerable improvements with the optimized parameters.

TABLE	2	

Brosa	Modes	Optimized	Parameters	

Mode	 𝑤!	 𝐴!!	 𝜎!,!	 𝑑!"#! 	 𝑑!"#! 	 𝑑!"#! 	

S2	 0.813 144.5 6.11 14.5 18.2 0.446

S1	 0.173 136.3 3.70 10.9 17.3 0.135

SL	 0.014 126.0 18.2 16.7 20.4 0.166

Fig.	4.	Comparison	of	Y(A,TKE)	for	Brosa	Modes	Optimized	Parameter	Fit	

Göök,	2014 Fit

Residuals

	

Fig.	5.	Y(A)	and	Y(TKE)	comparison	of	Brosa	Modes	fit	to	Göök	et	al.	data	

5. Sensit iv ity Analysis of CGMF Responses to Brosa Mode
Parameters

A	new	C++	class	for	the	sampling	of	fragment	mass	and	kinetic	energy	was	created	for	the	Brosa	
Mode	model,	and	called	“BrosaYields”.	The	important	methods	of	this	class	are	the	“readfile”	class,	
which	reads	a	file	from	the	data	directory	(specified	when	running	executable	with	–y	flag),	and	stores	
the	parameter	values.	An	example	of	an	acceptable	input	file	for	the	“BrosaYields”	class	is	found	in	App.	
C.	The	new	class	has	a	method	to	sample	a	mode	based	on	the	weights	of	the	modes.	The	“sampleA”	
method	samples	the	heavy	fragment	mass	according	to	

𝐴 = 𝐴!! + 𝜎!,! −2 log 𝜉! cos (2𝜋𝜉!) ,	 (6)	

where	the	mode	is	passed	as	an	argument	and	𝜉!	and	𝜉!	are	uniform	pseudo-random	numbers	from	0	
to	1.	The	“sampleTKEA”	method	accepts	a	mode	and	a	value	for	fragment	mass	and	samples	TKE	based	
on	the	TKE	probabilities	for	that	mass,	which	is	generated	in	the	constructor.	The	“sampleZA”	method	
uses	Wahl	systematics	to	sample	the	fragment	charge	from	its	mass	(Ref.	5).	Appendix	D	contain	the	
source	code	for	the	“BrosaYields”	class.	

A	sensitivity	analysis	was	performed	on	20	CGMF	responses	with	respect	to	the	17	adjustable	
parameters	(𝐴!"	remains	126.0	as	this	mode	is	symmetric).	The	analysis	is	based	on	obtaining	the	
relative	sensitivity	coefficients	for	all	responses	and	all	parameters	of	the	Brosa	Modes	model.	The	
sensitivity	coefficient	describes	the	relative	change	in	response 𝑅	to	the	change	in	parameter 𝑥,	and	is	
defined	by	

𝑆!,! =

𝑥
𝑅
𝜕𝑅
𝜕𝑥

 .	 (7)	

Fig.	6	shows	the	intensity	of	the	sensitivity	coefficients.	The	20	responses	are	the	average	neutron	and	𝛾	
ray	energies	in	lab	and	center	of	mass	frame	and	the	standard	deviation,	the	average	multiplicities	of	𝛾	
rays	and	neutrons	and	their	2nd	and	3rd	factorial	moments,	the	average	spin,	average	TKE,	and	average	
TXE,	each	with	one	standard	deviation.	The	sensitivity	coefficients	for	each	response	were	obtained	with	
a	brute	force	method.	A	linearly	spaced	array	of	one	parameter	was	provided	to	CGMF,	while	all	other	
parameters	were	held	at	their	nominal,	optimized	values.	Each	array	of	linearly	spaced	parameters	
contains	the	nominal	value	of	the	parameter	as	well	as	10	values	that	extend	to	approximately	±30%	of	
the	nominal	value.		There	are	several	cases	where	the	limits	of	the	parameters	were	intuitively	
constrained,	such	as	ensuring	𝑑!"#! > 𝑑!"#! ,	𝑤! > 0,	and	𝐴!!	for	all	modes.	The	responses	were	then	
gathered	and	a	linear	approximation	was	made	for	the	partial	derivative	in	Eq.	7.	This	analysis	shows	
that	the	most	influential	parameters	in	the	Brosa	Modes	model	are 𝑑!"#!! ,𝐴!!!,𝑑!"#!! , and 𝑤!! 	as	these	
columns	have	the	strongest	sensitivity	coefficients.		

	

Fig.	6.	Sensitivity	Coefficients	of	Brosa	Modes	Model	

5.A. Adding Constraints to Brosa Modes Parameters Using Sensitivity Coefficients
Seeing	that 𝑑!"#!! ,𝐴!!!,𝑑!"#!! ,	and		𝑤!!	are	the	most	sensitive	parameters,	constraints	can	be	placed	

on	these	parameters	such	that	key	observables	are	constrained.	The	analysis	in	Sec.	3	demonstrates	the	
strong	effects	of	the	TKE	of	the	fragments	on 𝜈,	thus	constraints	can	be	placed	on 𝑑!"#!! ,𝐴!!!,𝑑!"#!! ,	and		
𝑤!!	to	restrict 𝜈	to	3.76 ± 0.15 and	 𝑇𝐾𝐸 	to	185.7 ± 1.5 𝑀𝑒𝑉	for	Cf-252(sf)	(Ref.	1).	Figure	7	shows	
the	constraints	that	are	applicable	to	the	parameters,	which	are	necessary	for	further	use	of	the	Brosa	
Modes	model	in	analyzing	the	spontaneous	fission	of	Cf-252,	and	optimization	of	the	parameters.	

	

	

Fig.	7.	Constraints	on 𝑑!"#!! ,𝐴!!!,𝑑!"#!! ,	and		𝑤!!	applied	to		𝜈	and	〈𝑇𝐾𝐸〉	

6. Sensit iv ity Analysis of RT
The	parameter	RT	accounts	for	the	uneven	split	of	excitation	energy	between	the	nascent	fission	

fragments.	As	this	sharing	is	not	a	directly	measureable	quantity,	a	theoretical	ratio	of	initial	fragment	
temperatures	is	built	into	CGMF,	where	

𝑅! =

𝑇!!

𝑇!!
 .	 (8)	

After	sampling	Y(A,Z,TKE),	the	TXE	of	the	fragments	is		

𝑇𝑋𝐸 = 𝑄! + 𝐸!!"# + 𝐵! 𝐴! ,𝑍! − 𝑇𝐾𝐸 , (9)	

where	𝑄!	is	the 𝑄-value	of	the	reaction,	

 𝑄! = 𝑀! 𝐴! ,𝑍! +𝑀! 𝐴! ,𝑍! −𝑀! 𝐴! , 𝑍! , (10)	

𝑀!	refers	to	the	nuclear	mass,	𝐸!!"# 	is	the	kinetic	energy	of	the	incident	neutron,	and	𝐵! 𝐴! ,𝑍! 	is	the	
neutron	binding	energy	of	the	compound	nucleus.	The	TXE	is	then	dissipated	through	emission	of	
neutron	and	𝛾	rays,	until	a	ground	or	metastable	state	is	reached.		

An	array	of	RT	values	was	used	as	CGMF	input	to	analyze	the	sensitivity	of	several	responses	to	
various	RT.	Figure	8	shows	the	average	neutron	and	gamma	multiplicity	as	a	function	of	fragment	mass	
for	various	RT.	The	shape	of		𝜈(𝐴)	changes	dramatically	with	RT.	Low	RT	corresponds	to	very	little	
excitation	energy	in	the	light	fragment,	thus	very	few	neutrons	are	emitted	by	the	light	fragment.	There	
are	no	significant	effects	on	𝑁!(𝐴)	due	to	RT.		

	

Fig.	8.	Neutron	and	Gamma	multiplicities	as	functions	of	fragment	mass	with	various	RT	

Further	study	of	the	neutron	multiplicity	shows	that 𝜈	has	a	nonlinear	correlation	to	RT.	Figure	9	
shows	this	2nd	order	correlation,	where	the	fit	is	characterized	by			

𝜈 𝑅! = −0.505𝑅!! + 1.034𝑅! + 3.527 .	 (11)	

From	Eq.	11,	to	achieve	the	experimental	neutron	multiplicity	for	Cf-252(sf) 𝜈 = 3.76,	then 𝑅! = 3.86,	
which	would	drive	a	very	large	majority	of	the	excitation	energy	to	the	light	fragment,	and	produce	an	
unrealistic	excitation	energy	sharing.	This	analysis	was	performed	with	experimental	Y(A,Z,TKE)	from	
Brosa	et	al.	(Ref.	3).	To	accurately	reproduce	𝜈,	the	average	TKE	of	the	fragments	must	be	optimized	
before	constraining	RT	(Sec.	3).		

	

	

Fig.	9.	Sensitivity	of	𝜈	to	RT	

7. Sensit iv ity Analysis of 𝜶
The	Hauser-Feshbach	equations	require	knowledge	of	the	initial	fragment	spin	to	perform	a	de-

excitation	cascade.	The	fragment	spin	distribution	is	controlled	by	the	parameter	𝛼,	where	the	𝐽!	initial	
distribution	is	

𝜌 𝐽,𝜋 =

1
2
2𝐽 + 1 𝑒𝑥𝑝 −

𝐽 𝐽 + 1 ℏ!

2𝛼𝑇𝐼! 𝐴,𝑍
 .	 (12)	

Similar	analyses	were	performed	with	𝛼,	as	those	with	RT.	Figure	10	shows	the	average	neutron	and	
gamma	multiplicity	as	a	function	of	fragment	mass	for	various	𝛼.	A	higher	value	of	alpha	leads	to	high	
fragment	spins,	which	inhibits	neutron	emission.	Thus	the	𝜈 𝐴 	decreases	with	increasing	𝛼,	and	𝑁! 𝐴 	
increases	dramatically.		

	

Fig.	10.	Neutron	and	Gamma	multiplicities	as	functions	of	fragment	mass	with	various	𝛼	

Both	the	average	neutron	and	gamma	multiplicities	have	strong	linear	correlations	with	𝛼,	as	shown	in	
Fig.	11.		

	

	

	

	

	

	

	

	

	

Fig.	11.	Sensitivity	of		𝜈	and		𝑁!	to	𝛼	

8. Conclusions and Future Work
A	Monte	Carlo	based	fission	event	generator,	CGMF,	was	developed	and	is	undergoing	analysis	of	

the	input	parameters	such	that	important	fission	observables	can	be	consistently	reproduced.	This	
paper	discusses	the	effects	of	numerous	input	parameters	to	various	𝛾	ray	and	neutron	observables.	
The	observables	produced	by	CGMF	are	generated	to	account	for	phase	space	correlations,	which	is	
important	for	advanced	and	detailed	simulations	of	fission	events.		

A	new	model	for	sampling	Y(A,TKE)	was	implemented	into	CGMF	based	on	modes	or	“fission	
channels,”	as	presented	by	Brosa	et	al.	(Ref.	3).	This	method	for	Y(A,TKE)	sampling	eliminates	CGMF’s	
dependence	on	yield	data	being	read	from	a	file	and	presents	a	systematic	way	to	sample	these	yields	
for	nuclei	that	do	not	have	yield	data	available.	For	Cf-252(sf),	3	modes	and	17	parameters	were	
incorporated	in	the	Brosa	Modes	Y(A,TKE).	An	initial	optimization	was	performed	to	obtain	nominal	
parameter	values,	and	a	sensitivity	analysis	was	performed	to	see	the	effects	of	the	17	parameters	on	20	
neutron	and	𝛾	ray	responses.	This	sensitivity	analysis	made	it	possible	to	put	constraints	on	the	
parameters,	using	experimental	uncertainty	bounds	for	𝜈	and	〈𝑇𝐾𝐸〉.	The	parameters	with	the	most	
significant	sensitivities	(𝑑!"#!! ,𝐴!!!,𝑑!"#!! ,	and		𝑤!!)	can	be	tightly	constrained	according	to	this	analysis.	

Additional	sensitivity	analyses	were	performed	with	parameters	RT	and	𝛼	for	Cf-252(sf).	The	RT	
parameter	controls	the	sharing	of	excitation	energies	between	fission	fragments	and	has	a	2nd	order	
effect	on	𝜈.	An	unrealistic	value	of	RT	was	found	to	produce	𝜈,	and	the	author	suggests	tuning	the	TKE	of	
the	fragments	before	RT	to	produce	and	accurate	𝜈.	The	𝛼	parameter	affects	the	spin	distribution	of	the	
fragments,	in	that	a	higher	value	of	alpha	produces	a	larger	spin,	which	then	inhibits	neutron	emission.	
These	effects	were	seen	with	the	linear	correlations	shown	in	the	sensitivities	of	𝜈	and	𝑁!	to	𝛼. 	

With	the	calculated	sensitivity	coefficients,	optimization	of	the	CGMF	input	parameters	can	be	
performed	to	match	as	many	experimental	data	as	possible	for	Cf-252(sf).	The	author	recommends	a	
Unified	Monte	Carlo	(UMC)	(Ref.	6)	scheme	be	used	for	parameter	evaluation.	The	work	of	expanding	
similar	sensitivity	analyses	and	optimizations	to	other	compound	nuclei	and	neutron	induced	reactions	
is	also	necessary	for	the	applications	of	CGMF.	

Acknowledgements
This	work	was	performed	at	Los	Alamos	National	Laboratory,	under	the	auspices	of	the	National	

Nuclear	Security	Administration	of	the	US	Department	of	Energy	at	Los	Alamos	National	Laboratory	
under	Contract	No.	DE-AC52-06NA25396.	This	work	was	partly	supported	by	the	Office	of	Defense	
Nuclear	Nonproliferation	Research	&	Development	(DNN	R&D),	National	Nuclear	Security	
Administration,	US	Department	of	Energy.	

References
1. A.	Göök,	F.-J.	Hambsch,	and	M.	Vidali,	Prompt	neutron	multiplicity	in	correlation	with	fragments	

from	spontaneous	fission	of	252Cf,	Phys.	Rev.	C	90,	064611	(2014).	
2. A.	D.	Carlson,	V.	G.	Pronyaev,	D.	L.	Smith,	Nancy	M.	Larson,	Zhenpeng	Chen,	G.	M.	Hale,	F-J.	

Hambsch	et	al.	International	evaluation	of	neutron	cross	section	standards,	Nuclear	Data	
Sheets	110,	no.	12:	3215-3324	(2009).	

3. U.	Brosa,	H.-H.	Knitter,	Proc.	of	the	18th	International	Symposium	on	Nuclear	Physics,	Gaußig	
1988.	Org.	by	Technical	University	Dresden,	Seeliger,	D.,	Unholzer,	S.	(eds.),	Rossendorf,	
Zentralinstitut	für	Kernforschung	(1990).	

4. E.	Jones,	E.	Oliphant,	P.	Peterson,	et	al.	SciPy:	Open	Source	Scientific	Tools	for	Python,	
2001,	http://www.scipy.org/	[Online;	accessed	2017-08-17].	

5. A.	C.	Wahl,	Systematics	of	fission-product	yields.	No.	LA-13928.	Los	Alamos	Nat.	Lab.,	(2002).	
6. R.	Capote,	and	D.	L.	Smith,	An	Investigation	of	the	Performance	of	the	Unified	Monte	Carlo	

Method	of	Neutron	Cross	Section	Data	Evaluation,	Nuclear	Data	Sheets	109,	2768-2773	(2008).	

Appendix A: Example “histories-vectors.CGMF” f i le
	

#	98252	0	30000	1.7	
119	46	22.398	1.5	1	105.368	3	4	0	
896.644	4329.176	-1949.049	912.001	4240.267	-1869.834	
0.017	0.007	0.053	1.491	-0.042	0.062	-0.030	3.062	-0.030	0.013	0.005	0.521	-0.003	0.008	-0.017	0.170	-
0.001	0.022	-0.023	0.464	0.029	0.025	-0.037	1.341		
0.968	-1.156	-0.779	1.697	0.944	-1.128	-0.760	1.656	0.036	-0.167	-0.637	0.659	0.036	-0.167	-0.636	0.659	
-1.077	-0.752	0.579	1.436	-1.114	-0.777	0.599	1.484	0.112	0.175	0.270	0.340	0.110	0.173	0.266	0.336		
133	52	8.343	11.5	-1	94.279	0	6	0	
-896.644	-4329.176	1949.049	-896.644	-4329.176	1949.049	
-0.893	2.245	3.817	4.517	-0.901	2.264	3.849	4.556	-0.706	-1.004	0.914	1.530	-0.719	-1.023	0.931	1.559	
1.326	0.859	-0.026	1.580	1.284	0.832	-0.025	1.530	0.607	-0.112	0.020	0.617	0.584	-0.108	0.019	0.594	
0.032	0.028	-0.013	0.045	0.031	0.027	-0.013	0.043	-0.010	0.012	0.051	0.053	-0.010	0.012	0.051	0.054		
112	44	22.140	14.0	1	105.441	3	5	0	
-4273.729	1591.524	-1089.529	-4161.887	1553.021	-1046.095	
0.033	0.030	0.010	1.001	-0.068	0.015	-0.048	3.364	-0.027	0.016	-0.017	0.590	-0.007	0.020	-0.019	0.394	-
0.007	-0.030	0.010	0.487	-0.045	0.006	0.021	1.143		
-0.272	0.331	-0.204	0.474	-0.279	0.340	-0.209	0.487	0.021	-0.134	0.113	0.177	0.020	-0.134	0.113	0.176	
0.005	0.063	0.038	0.074	0.005	0.063	0.038	0.074	-0.050	-0.065	-0.055	0.098	-0.051	-0.066	-0.056	0.101	
0.112	0.010	-0.069	0.132	0.108	0.010	-0.067	0.127		
140	54	12.730	8.0	1	84.339	2	2	0	
4273.729	-1591.524	1089.529	4161.960	-1561.321	1078.621	
0.049	0.006	-0.031	1.609	0.068	-0.058	0.014	3.888	0.001	0.012	0.042	0.893	0.051	0.026	-0.003	1.535		
0.154	-0.448	-0.095	0.484	0.153	-0.444	-0.094	0.479	0.281	0.174	0.488	0.589	0.276	0.171	0.480	0.579		
103	40	18.046	16.5	-1	101.700	2	8	0	
-594.820	-2098.206	3839.903	-518.831	-2053.371	3795.438	
0.025	0.011	-0.041	1.161	-0.052	-0.032	0.057	3.250	-0.042	0.025	-0.024	1.379	-0.029	-0.016	-0.009	0.563		
1.378	-0.804	0.744	1.760	1.329	-0.775	0.718	1.698	1.237	0.092	0.074	1.242	1.181	0.088	0.071	1.186	-
0.190	0.301	0.215	0.416	-0.194	0.308	0.220	0.425	-0.206	0.094	0.096	0.246	-0.214	0.098	0.100	0.256	-
0.083	0.118	0.403	0.428	-0.084	0.119	0.407	0.432	-0.058	-0.229	-0.183	0.299	-0.059	-0.231	-0.185	0.302	-
0.134	0.156	-0.085	0.223	-0.138	0.161	-0.088	0.229	0.040	-0.050	0.074	0.098	0.040	-0.049	0.073	0.096		
149	58	20.498	13.5	1	70.287	3	3	0	
594.820	2098.206	-3839.903	533.811	2094.793	-3784.843	
-0.033	0.051	-0.010	1.798	-0.002	-0.046	-0.024	1.284	-0.013	-0.043	0.001	0.935	0.012	0.045	0.005	1.027	
0.012	0.002	-0.052	1.350	0.056	0.005	-0.039	2.197		
0.368	0.191	-0.285	0.503	0.360	0.187	-0.278	0.491	0.363	-0.128	-0.140	0.410	0.353	-0.125	-0.136	0.398	-
0.203	-0.017	-0.159	0.258	-0.208	-0.018	-0.163	0.265	
	 	

Appendix B: Example CGMF Observables Summary Fi le
	

	

	
	

Appendix C: Example BrosaYields Class Input Fi le
	

//	Cf252	Brosa	Mode	data:	
98252	
w	0.8128359323532158	0.1734091083059585	0.013754959340825731	
dmin	14.4946848	10.8924571	16.7133975	
dmax	18.2042691	17.322745	20.4274353	
ddec	0.446051597	0.134703577	0.165676002	
Abar	144.542941	136.328441	126.0	
sigA	6.11049848	3.69590546	18.225735	
	

Appendix D: BrosaYields Class Source Code
	

/*	
	*		CGMF	
	*		Version:	1.0.6	
	*	
	*		[FissionFragments.h]	
	*		
	*		Generates	primary	fission	fragment	yields	to	be	sampled	in	CGMF.	It	either	
	*		reads	data	from	input	file,	or	produce	them	from	systematics.	
	*	
	*/	
	
#ifndef	__BROSAYIELDS_H__	

#define	__BROSAYIELDS_H__	
#endif	
	
//	i'm	using	std::vectors	
#include	<vector>	
#include	<string.h>	
	
using	namespace	std;	
	
class	BrosaYields	
{	
	 /*	PRIVATE	*/	
private:	
	 //	The	data	that	is	important	for	BrosaYields	
	 //	the	parameters	that	are	necessary	for	the	yield	constructions	
	 //	these	will	be	"push_back(ed)"	in	the	constructor	
	 	
	
	 /*	PUBLIC	*/	
public:	
	
	 vector<double>	w;	
	 vector<double>	Abar;	
	 vector<double>	sigA;	
	 vector<double>	dmin;	
	 vector<double>	dmax;	
	 vector<double>	ddec;	
	
	 int	ZAIDc,	Ac,	Zc;	//	Original	(before	any	pre-fission	neutron	emission)	compound	fissioning	
nucleus	
	
	 //			7/26/17	values	-	Cf	252	
	 static	const	int	NUMMODE	=	3;	
	 static	const	int	NUMA=	300;	
	 static	const		int	NUMTKE	=	300;	
	
			 static	const		int				NUMdZ		=			21;	//	[-dZ:+dZ]	if	dZ=10	for	charge	distribution	around	most	
probable	Zp[A]		
			 static	const		int				NUMZ=		100;	//	number	of	charges	Z	
	
	
	 //	vectors	of	A	and	TKE	
	 //	initialized	in	constructor	
	 int	A[NUMA];	
	 int	TKE[NUMTKE];	
	 int	Amin;	
	 int	Amax;	
	 int	TKEmin;	

	 int	TKEmax;	
	 int	Zmin,	Zmax;	
	 int	Zt;	
	 double	PE;	
	
	 //	Wahl's	parameters	
	
	 int	dZ;	
			 double	Z0[NUMA];	
			 double	sZ0[NUMA];	
			 double	FZZ0[NUMA];	
			 double	FNZ0[NUMA];	
	
			 double	sigmaZ;	
	
	 double	YA[NUMA];	
			 double	YZA[NUMdZ][NUMA];	
			 double	YZA2[NUMZ][NUMA];	
	
	
	 //	array	of	TKE|A	for	each	mode		
	 //	first	index	is	mode	number	
	 //	second	index	is	A	(row)	
	 //	third	index	is	probability	of	TKE|A	
	 double	YTKEA[NUMMODE][NUMA][NUMTKE];	
	
	 static	double	e2(){	
	 	 return	1.4399643929;//	MeV	fm	
	 }	
	
//	Constructor:	when	implemented,	a	file	is	read	with	the	necessary	parameters	for	the	Brosa	modes	
	 //	necessary	data	in	input	file:	h	(equivalently	the	weight	w),	Abar,	sigA,	dmax,	dmin,	ddec	
	 //	for	each	mode	
	 BrosaYields	(string	inputFilename,	int	ZAID,	int	A_min);	
	
	 ~BrosaYields	(void);	
	
	 //	function	to	read	file	for	input	parameters	
	 void	readfile(string	inputFilename);	
	
	 //	function	to	build	YTKEA	
	 void	buildYTKEA();	
	
	
	
	 void	buildYA();	
	
	 //	A	method	that	would	be	necessary	would	be	finding	out	what	mode	we	are	dealing	with	

	 int	samplemode();	//	returns	a	mode	number	according	to	the	order	of	that	in	the	input	file	
	 //	I	intend	for	the	order	to	be	S2,	S1,	SL	
	
	 //	let's	have	a	public	method	that	can	sample	an	A	
	 //	ALWAYS	SAMPLES	THE	HEAVY	FRAGMENT	
	 int	sampleA(int	i_mode);	
	
	 //	And	another	method	that	samples	Y(TKE|A)	
	 int	sampleTKEA(int	A,	int	mode);	
	
	 void	computeWahlParameters();	
	
	 void	buildYZA();	
	
	 int	sampleZA(int	A);	
	
};	
	

/*	
	*		CGMF	
	*		Version:	1.0.7.2	
	*		Austin	Carter	
	*	
	*		[BrosaYields.cpp]	
	*	
	*/	
	
//	some	libraries	
#include	<iostream>	
#include	<fstream>	
#include	<string>	
#include	<cstdlib>	
#include	<cmath>	
#include	<iomanip>	
#include	<sstream>	
#include	<stdio.h>	
#include	<string.h>	
	
	
#include	"config.h"	
//for	the	random	numbers	
#include	"mt19937ar.h"	
//	has	constants:	pi,	etc.	
#include	"physics.h"	
	
//	our	namespace	
using	namespace	std;	

	
#include	"BrosaYields.h"	
	
//	CONSTRUCTOR	
BrosaYields::BrosaYields(string	filein,	int	ZAID,	int	A_min){	
		
		//	initialize	stuff	
		Amin	=	A_min;	
		Amax	=	NUMA	-	1;	
		TKEmin	=	100;	
		TKEmax	=	NUMTKE	-	1;	
		Zt	=	Zc;	
		PE	=	0.0;	
		dZ	=	3;	
		PE	=	0.0;		
	
	
			
	 ZAIDc	=	ZAID;	
	 Zc=int(ZAIDc/1000.0);	
			 Ac=ZAIDc-1000*Zc;	
			 Zt	=	Zc;	
			 PE	=	0.0;	
	 	
	 //	populate	A	and	TKE	vectors	
	 for	(int	i	=	0;	i	<	NUMA;	i++){	
	 	 A[i]	=	i;	
	 }	
	
	 for	(int	i	=	0;	i	<	NUMTKE;	i++){	
	 	 TKE[i]	=	i;	
	 }	
	
	 //	put	parameter	data	into	vectors	from	file	
	 readfile(filein);	
		//cout	<<	"readfile	good"	<<	endl;	
	
	 //	build	the	YA	array	
	 buildYA();	
		//cout	<<	"buildYA	good"	<<	endl;	
	 //	build	the	Y(TKE|A)_m	array	
	 buildYTKEA();	
		//cout	<<	"buildYTKEA	good"	<<	endl;	
	
	 //	build	the	Y(Z|A)	array	
	 computeWahlParameters();	
		//cout	<<	"computeWahlParameters	good"	<<	endl;	
	 buildYZA();	

		//cout	<<	"buildYZA	good"	<<	endl;	
	
	
	
	
}	
	
//	Destructor	
BrosaYields::~BrosaYields	()	{}	
	
void	BrosaYields::readfile(string	inputFilename){	
	
			 string	f	=	DATADIR;	
	 f	+=	inputFilename;	
	 ifstream	brosadata	(&f[0],ios::in);	
	
	 if	(!brosadata)	{	
					 cerr	<<	"[BrosaYields::readfile(inputFilename)]	Brosa	Yields	parameters	data	file	could	not	be	
found"	<<	f	<<		endl;	
					 exit(-1);	
			 }	
	
			 string	line;	
			 string	strtmp;	
			 double	dubtmp;	
	
			 while(getline(brosadata,line)){	
			 	 stringstream	ss(line);	
			 	 //found	the	w	
			 	 if(int(line.find("w"))	==	0){	
			 	 	 ss	>>	strtmp;	
			 	 	 for	(int	i	=	0;	i	<	NUMMODE;	i++){ss	>>	dubtmp;	w.push_back(dubtmp);}	
			 	 }	
			 	 if(int(line.find("dmin"))	==	0){	
			 	 	 ss	>>	strtmp;	
			 	 	 for	(int	i	=	0;	i	<	NUMMODE;	i++){ss	>>	dubtmp;	dmin.push_back(dubtmp);}	
			 	 }	
			 	 if(int(line.find("dmax"))	==	0){	
			 	 	 ss	>>	strtmp;	
			 	 	 for	(int	i	=	0;	i	<	NUMMODE;	i++){ss	>>	dubtmp;	dmax.push_back(dubtmp);}	
			 	 }	
			 	 if(int(line.find("ddec"))	==	0){	
			 	 	 ss	>>	strtmp;	
			 	 	 for	(int	i	=	0;	i	<	NUMMODE;	i++){ss	>>	dubtmp;	ddec.push_back(dubtmp);}	
			 	 }	
			 	 if(int(line.find("Abar"))	==	0){	
			 	 	 ss	>>	strtmp;	
			 	 	 for	(int	i	=	0;	i	<	NUMMODE;	i++){ss	>>	dubtmp;	Abar.push_back(dubtmp);}	

			 	 }	
			 	 if(int(line.find("sigA"))	==	0){	
			 	 	 ss	>>	strtmp;	
			 	 	 for	(int	i	=	0;	i	<	NUMMODE;	i++){ss	>>	dubtmp;	sigA.push_back(dubtmp);}	
			 	 }	
			 }	
	
}	
	
void	BrosaYields::buildYA(){	
		std::fill_n	(YA,	NUMA,	0.0);	
	 for(int	i	=	Amin;	i	<	NUMA;	i++){	
	 	 YA[i]	=	0.0;	
	 	 for	(int	j	=	0;	j	<	3;	j++){	
	 	 	 YA[i]	+=	1/sqrt(8*	pi	*	sigA[j]*sigA[j])*	
	 	 	 (exp(-(A[i]	-	Abar[j])*(A[i]	-	Abar[j])/2./sigA[j]/sigA[j])	+	
	 	 	 	 exp(-(A[i]	-	Ac	+Abar[j])	*	(A[i]	-	Ac	+Abar[j])	/	2.	/	sigA[j]	/	sigA[j]));	
	 	 }	
	 }	
}	
	
void	BrosaYields::buildYTKEA(){	
	 //	okay,	the	way	this	large	array	is	structured	is	as	follows:	
	 //	3	modes	that	act	as	pages;	the	first	index	element	
	 //	then	for	the	2d	array	(contained	within	each	mode):	
	 //					TKE	---------->	
	 //	A	
	 //	|	
	 //	|	
	 //	|	
	 //	^	
	 //	where	the	distributions	are	normalized	to	1.0	along	the	row	which	are	sampled	in	
sampleTKEA	
	
	 double	T;	
	 double	TKEAtotal;	
	
	 for	(int	i	=	0;	i	<	NUMMODE;	i++){	
	 	 for	(int	j	=	0;	j	<	NUMA;	j++){	
						//	0	the	array	
						for	(int	k	=	0;	k	<	NUMTKE;	k++){	
								YTKEA[i][j][k]=	0.0;	
						}	
	 	 	 TKEAtotal	=	0.;	
	 	 	 for	(int	k	=	TKEmin;	k	<	NUMTKE;	k++){	
	 	 	 	 T	=	((double)Zc/(double)Ac)*((double)Zc/(double)Ac)	*	((double)Ac	-	
(double)A[j])*(double)A[j]	*	e2()	/	(double)TKE[k]	-	dmin[i];	
	 	 	 	 if(T	>	0.){	

	 	 	 	 	 YTKEA[i][j][k]	=	(200./(double)TKE[k])*(200./(double)TKE[k])*	
exp(2.	*	(dmax[i]	-	dmin[i])/	ddec[i]	-		
	 	 	 	 	 	 T/ddec[i]	-	(dmax[i]	-	dmin[i])*(dmax[i]	-	dmin[i])	/T	
/ddec[i])	
	 	 	 	 	 	 *	(double)YA[j];	
	 	 	 	 }	else	{	
	 	 	 	 	 YTKEA[i][j][k]	=	0.;	
	 	 	 	 }	
	 	 	 	 TKEAtotal	+=	YTKEA[i][j][k];	
	
	 	 	 }	
	
	 	 	 //	avoid	the	nans	
	 	 	 if	(TKEAtotal	==	0.0){	
	 	 	 	 TKEAtotal	=	0.01;	
	 	 	 }	
	 	 	 //	normalize	to	1.0	for	each	row	
	 	 	 for	(int	k	=	TKEmin;	k	<	NUMTKE;	k++){	
	 	 	 	 YTKEA[i][j][k]=	YTKEA[i][j][k]	/	TKEAtotal;	
	 	 	 }	
	 	 }	
	 }	
	
}	
	
int	BrosaYields::samplemode(){	
	 //	get	a	random	number	
	 double	r1	=	genrand_real3();	
	
	 //	sample	probability	mass	dist	for	mode	
	 double	wtot	=	0.;	
	 int	i_mode;	
	 for(int	i	=	0;	i	<	NUMMODE;	i++){	
	 	 wtot	+=	w[i];	
	 	 if	(r1	<=	wtot){	
	 	 	 i_mode	=	i;	
	 	 	 break;	
	 	 }	
	 }	
	 return	i_mode;	
	
}	
	
	
int	BrosaYields::sampleA(int	i_mode){	
	
	 //	sample	the	gaussian	to	find	A	for	the	HEAVY	Fragment	
	 double	r2	=	genrand_real3();	

	 double	r3	=	genrand_real3();	
	
	 double	A_s	=	Abar[i_mode]	+	sigA[i_mode]	*	sqrt(-2.	*	log(r2))	*	cos(2.	*	pi	*	r3);	
	
	
	 //	ALWAYS	SAMPLES	THE	HEAVY	FRAGMENT	
	
	 //	return	the	heavy	fragment	as	rounded	integer	
	 return	int(A_s+0.5);	
}	
	
int	BrosaYields::sampleTKEA(int	A,	int	i_mode){	
	
	 //	we	use	YTKEA	as	a	probability	mass	distribution	
	 //	find	the	index	of	A	
	 int	i_A	=	(int)(A);	
	
	 double	r4	=	genrand_real3();	
	
	 double	KEtot	=	0.0;	
	
	 for	(int	i_TKE	=	0;	i_TKE	<	NUMTKE;	i_TKE++){	
	 	 KEtot	+=	YTKEA[i_mode][i_A][i_TKE];	
	 	 if	(r4	<=	KEtot){	
						//cout	<<	"sampled	TKE|A"	<<	endl;	
	 	 	 return	(int)(i_TKE);	
	 	 }	
	 }	
	
	 //	should	not	get	here	
	 cerr	<<	"ERROR:	Could	not	sample	KE	distribution	in	BrosaModes	class."	<<	endl;	
				exit(-1);	
}	
	
int	BrosaYields::sampleZA(int	A){	
	 int	i_A	=	int(A);	
	 double	r5	=	genrand_real3();	
	
	 //	normalize	the	column	vector	in	YZA	(because	we	sample	Z	based	on	A)	
	 double	YZA_tot	=	0.0;	
	 for	(int	i	=	0;	i	<	NUMZ;	i++){	
	 	 YZA_tot	+=	YZA2[i][i_A];	
	 }	
	 //create	a	new	vector	to	be	sampled	from	
	 double	YZA_temp[NUMZ];	
	 for	(int	i	=	0;	i<NUMZ;	i++){	
	 	 YZA_temp[i]	=	YZA2[i][i_A]	/	YZA_tot;	
	 }	

	
	 //	sample	the	probability	mass	distribution	
	 double	Ztot	=	0.0;	
	 for	(int	i_Z	=	0;	i_Z	<	NUMZ;	i_Z++){	
	 	 Ztot	+=	YZA_temp[i_Z];	
	 	 if(r5	<=	Ztot){	
	 	 	 return	i_Z;	
	 	 }	
	 }	
	 //	should	never	get	here	
	 cerr	<<	"ERROR:	Could	not	sample	Z	distribution	in	BrosaModes	class."	<<	endl;	
				exit(-1);	
}	
	
void	BrosaYields::buildYZA(){	
	 double	sigma,	c=0.0,	Zp0;	
		int	iZp0,	iZ;	
		int	i,	j;	
		double	oddeven=1.0,	V,	W;	
			
		sigma	=	0.4;	
		//		c=2.0*(sigma*sigma+1.0/12.0);	
			
		for	(i=Amin;	i<=Amax;	i++)	{	
				c	=	sZ0[i];	
				Zp0	=	Z0[i];	
				iZp0	=	(int)	floor(Zp0+0.5);	
					
				for	(j=0;	j<=2*dZ;	j++)	{	
							
						//						Zi	=	Zp0+j-dZ;	
						iZ	=	iZp0+j-dZ;	
						YZA[j][i]	=	0.0;	
						YZA2[iZ][i]	=	0.0;	
							
						if	(c>0.0)	{	
								//								Zi	=	double(int(Zp0+0.5)+j);	
								if	(iZ%2==0)	{	
										if	(i%2==0)	{	
												oddeven	=	FZZ0[i]*FNZ0[i];	//	even	Z	-	even	N	
										}	else	{	
												oddeven	=	FZZ0[i]/FNZ0[i];	//	even	Z	-	odd	N	
										}	
								}	else	{	
										if	((i+1)%2==0)	{	
												oddeven	=	FNZ0[i]/FZZ0[i];	//	odd	Z	-	even	N	
										}	else	{	
												oddeven	=	1.0/(FZZ0[i]*FNZ0[i]);	//	odd	Z	-	odd	N	

										}	
								}	
									
								V	=	(iZ-Zp0+0.5)/(sqrt(2.0)*c);	
								W	=	(iZ-Zp0-0.5)/(sqrt(2.0)*c);	
									
								YZA[j][i]	=	oddeven	*	0.5	*	(erf(V)	-	erf(W));	//	YA[i]	
								YZA2[iZ][i]	=	YZA[j][i];	
									
								//			ExpYields%Yza(j,i)	=	oddeven	*	1.0_rk/sqrt(c*pi)*exp(-1.0_rk*	(Zi-Zp)**2/c)	*	1.0_rk	
!ExpYields%Ya(i)	
									
						}	else	{	
									
								if	(j==dZ)	{	
										//										YZA[j][i]	=	1.0;	//	yields%Ya(i)	
										//									 YZA2[iZ][i]	=	1.0;	
										YZA[j][i]	=	YA[i];	
										YZA2[iZ][i]	=	YA[i];	
								}	
						}	
							
				}	//	end	loop	over	Z	
					
					
				//	TEMPORARY	
===
===================	
				//	 	 exit(0);	
				//	TEMPORARY	
===
===================	
					
				double	x=0;	
				for	(j=0;	j<=2*dZ;	j++)	{	x	+=	YZA[j][i];	}	
				if	(x!=0)	{	
						for	(j=0;	j<=2*dZ;	j++)	{	
								YZA[j][i]	=	YZA[j][i]	*	YA[i]	/	x;	
						}	
				}	
					
				double	y=0;	
				for	(j=0;	j<NUMZ;	j++)	{	y	+=	YZA2[j][i];	}	
				if	(y!=0)	{	
						for	(j=0;	j<NUMZ;	j++)	{	
								YZA2[j][i]	=	YZA2[j][i]	*	YA[i]	/	y;	
						}	
				}	

					
		}	//	end	loop	over	A	
			
		/*		ofstream	out;	
			out.open("yza");	
			for	(i=Amin;	i<=Amax;	i++)	{	
			out	<<	"\n#\n\n";	
			int	z	=	int(Z0[i]+0.5)-dZ;	
			for	(j=0;	j<=2*dZ;	j++)	{	
	 	 	 out	<<	i	<<	"	"	<<	z+j	<<	"	"	<<	YZA[j][i]	<<	"\n";	
			}	
			}	
			out.close();	
			*/	
			
	
}	
	
void	BrosaYields::computeWahlParameters(){	
	 double	sigz140t,	delz140t,	Fz140t,	Fn140t,	sigzSLt,	delzSLt,	FzSLt,	SL50t,	
		sigz50t,	delzmaxt,	sigzSLWt,	delzSLWt,	FzSLWt,	FnSLWt;	
			
		double	delz[NUMA],	sigz[NUMA],	Fz[NUMA],	Fn[NUMA];	
			
		double	sigz140[5]	=	{0.566,	0.0,	0.0064,	0.0109,	0.0};	
		double	delz140[5]	=	{-0.487,	0.0,	0.0180,	0.0,	-0.00203};	
		//		double	Fz140[5]			=	{1.207,	0.0,	-0.0420,	0.0,	0.0022};	
		double	Fz140[5]			=	{1.242,	0.0,	-0.0183,	-0.0152,	0.0};	
		double	Fn140[5]			=	{1.076,	0.0,	0.0,	0.0,	0.0};	
		double	sigzSL[5]		=	{-0.0038,	0.0,	0.0,	0.0,	0.0};	
		double	delzSL[5]		=	{-0.0080,	0.0,	0.0,	0.0,	0.0};	
		double	FzSL[5]				=	{0.0030,	0.0,	0.0,	0.0,	0.0};	
		double	SL50[5]				=	{0.191,	0.0,	-0.0076,	0.0,	0.0};	
		double	sigz50[5]		=	{0.356,	0.060,	0.0,	0.0,	0.0};	
		double	delzmax[5]	=	{0.699,	0.0,	0.0,	0.0,	0.0};	
		double	sigzSLW[5]	=	{-.045,	0.0094,	0.0,	0.0,	0.0};	
		double	delzSLW[5]	=	{0.0,	-0.0045,	0.0,	0.0,	0.0};	
		double	FzSLW[5]			=	{0.159,	-0.028,	0.0,	0.0,	0.0};	
		double	FnSLW[5]			=	{0.039,	0.0,	0.0,	0.0,	0.0};	
			
		std::fill_n(Z0,NUMA,0.0);	
		std::fill_n(sZ0,NUMA,0.0);	
		std::fill_n(FZZ0,NUMA,0.0);	
		std::fill_n(FNZ0,NUMA,0.0);	
			
		//==	
		//	TEMPORARY...	FOR	ANYTHING	BUT	n+U-235	FISSION	
		//==	

		/*		if	(Ac!=236)	{	
				
			for	(int	i=Amin;	i<=Amax;	i++)	{	
			delz[i]		=	0.5;	//	dZ	
			if(i>Asym)	delz[i]	=	-0.5;	//	dZ	
			sigz[i]	=	sigmaZ;	//	width	of	distribution	
			Fz[i]	=	1.0;	//	FZ	-	odd-even	factor	
			Fn[i]	=	1.0;	//	FN	-	odd-even	factor	
			}	
				
			//--	save	Wahl	parameters	
			double	x	=	float(Zt)/Ac;	
			for	(int	i=Amin;	i<=Amax;	i++)	{	
			Z0[i]			=	(x*i+delz[i]);	
			sZ0[i]		=	sigz[i];	
			FZZ0[i]	=	Fz[i];	
			FNZ0[i]	=	Fn[i];	
			//						cout	<<	i	<<	"	"	<<	Z0[i]	<<	"	"	<<	sZ0[i]	<<	"\n";	
			}	
				
			//--	Find	true	(Zmin,	Zmax)	
			Zmin	=	(int)	floor(Z0[Amin]+0.5)-dZ;	
			Zmax	=	(int)	floor(Z0[Amax]+0.5)+dZ;	
				
			return;	
				
			}	
			*/	
			
			
		//	Calculate	input	parameter	for	any	given	fissioning	system	
		//	>>	SHOULD	6.551	BE	REPLACED	BY	neutronSeparationEnergy?	I	THINK	SO...	
		//	WHAT	ABOUT	(92,236)...	IS	IT	JUST	VALID	FOR	U235?	
		if	(PE	<=	8.0)	{	
					
				sigz140t	=	sigz140[0]+sigz140[1]*(Zt-92)+sigz140[2]*(Ac-236)+sigz140[3]*(PE-6.551)+sigz140[4]*(Ac-
236)*(Ac-236);	
				delz140t	=	delz140[0]+delz140[1]*(Zt-92)+delz140[2]*(Ac-236)+delz140[3]*(PE-
6.551)+delz140[4]*(Ac-236)*(Ac-236);	
				Fz140t			=	Fz140[0]+Fz140[1]*(Zt-92)+Fz140[2]*(Ac-236)+Fz140[3]*(PE-6.551)+Fz140[4]*(Ac-236)*(Ac-
236);	
				Fn140t			=	Fn140[0]+Fn140[1]*(Zt-92)+Fn140[2]*(Ac-236)+Fn140[3]*(PE-6.551)+Fn140[4]*(Ac-
236)*(Ac-236);	
				sigzSLt		=	sigzSL[0]+sigzSL[1]*(Zt-92)+sigzSL[2]*(Ac-236)+sigzSL[3]*(PE-6.551)+sigzSL[4]*(Ac-236)*(Ac-
236);	
				delzSLt		=	delzSL[0]+delzSL[1]*(Zt-92)+delzSL[2]*(Ac-236)+delzSL[3]*(PE-6.551)+delzSL[4]*(Ac-
236)*(Ac-236);	
				FzSLt				=	FzSL[0]+FzSL[1]*(Zt-92)+FzSL[2]*(Ac-236)+FzSL[3]*(PE-6.551)+FzSL[4]*(Ac-236)*(Ac-236);	

				SL50t				=	SL50[0]+SL50[1]*(Zt-92)+SL50[2]*(Ac-236)+SL50[3]*(PE-6.551)+SL50[4]*(Ac-236)*(Ac-236);	
				sigz50t		=	sigz50[0]+sigz50[1]*(Zt-92)+sigz50[2]*(Ac-236)+sigz50[3]*(PE-6.551)+sigz50[4]*(Ac-
236)*(Ac-236);	
				delzmaxt	=	delzmax[0]+delzmax[1]*(Zt-92)+delzmax[2]*(Ac-236)+delzmax[3]*(PE-
6.551)+delzmax[4]*(Ac-236)*(Ac-236);	
				sigzSLWt	=	sigzSLW[0]+sigzSLW[1]*(Zt-92)+sigzSLW[2]*(Ac-236)+sigzSLW[3]*(PE-
6.551)+sigzSLW[4]*(Ac-236)*(Ac-236);	
				delzSLWt	=	delzSLW[0]+delzSLW[1]*(Zt-92)+delzSLW[2]*(Ac-236)+delzSLW[3]*(PE-
6.551)+delzSLW[4]*(Ac-236)*(Ac-236);	
				FzSLWt			=	FzSLW[0]+FzSLW[1]*(Zt-92)+FzSLW[2]*(Ac-236)+FzSLW[3]*(PE-6.551)+FzSLW[4]*(Ac-
236)*(Ac-236);	
				FnSLWt			=	FnSLW[0]+FnSLW[1]*(Zt-92)+FnSLW[2]*(Ac-236)+FnSLW[3]*(PE-6.551)+FnSLW[4]*(Ac-
236)*(Ac-236);	
					
		}	else	if	(PE<=20.0)	{	
					
				sigz140[0]	=	0.542;	sigz140[1]	=	1.310;	sigz140[2]	=	0.033;	sigz140[3]	=	0.0;	sigz140[4]	=	-0.005;	
				delz140[0]	=	-0.428;	delz140[1]	=	0.0;	delz140[2]	=	0.0;	delz140[3]	=	0.164;	delz140[4]	=	-0.0116;	
				SL50[0]	=	0.191;	SL50[1]	=	0.0;	SL50[2]	=	-0.0076;	SL50[3]	=	0.0;	SL50[4]	=	0.0;	
				sigz50[0]	=	0.542;	sigz50[1]	=	1.310;	sigz50[2]	=	0.033;	sigz50[3]	=	0.0;	sigz50[4]	=	-0.005;	
					
				sigz140t	=	(sigz140[0]+sigz140[2]*(Zt-92))+((sigz140[1]+sigz140[3]*(Zt-92))-(sigz140[0]+sigz140[2]*(Zt-
92)))*(1.0-exp(-sigz140[4]*PE));	
				delz140t	=	(delz140[0]+delz140[2]*(Zt-92))+((delz140[1]+delz140[3]*(Zt-92))-
(delz140[0]+delz140[2]*(Zt-92)))*(1.0-exp(-delz140[4]*PE));	
				Fz140t			=	1.0;	
				Fn140t			=	1.0;	
				sigzSLt		=	0.0;	
				delzSLt		=	0.0;	
				FzSLt				=	0.0;	
				SL50t				=	(SL50[0]+SL50[2]*(Zt-92))+((SL50[1]+SL50[3]*(Zt-92))-(SL50[0]+SL50[2]*(Zt-92)))*(1.0-exp(-
SL50[4]*PE));	
				sigz50t		=	(sigz50[0]+sigz50[2]*(Zt-92))+((sigz50[1]+sigz50[3]*(Zt-92))-(sigz50[0]+sigz50[2]*(Zt-
92)))*(1.0-exp(-sigz50[4]*PE));	
				delzmaxt	=	0.0;	
				sigzSLWt	=	0.0;	
				delzSLWt	=	0.0;	
				FzSLWt			=	0.0;	
				FnSLWt			=	0.0;	
					
					
		}	else	{	
					
				cerr	<<	"[computeWahlParameters]	Wahl	parameters	only	defined	up	to	Einc+Sn=20	MeV!"	<<	endl;	
				exit(-1);	
					
		}	
			

		//	Calculate	the	region	values	
			
		double	F1=floor((250.-Ac)/14.+0.5);		//	F1=anint((250.-Ac)/14.);	in	F95	
		double	F2=1.-F1;	
		double	AK1=50.0*float(Ac)/Zt-delzmaxt/SL50t;	
		double	AK2=(50.0-delzmaxt)*float(Ac)/Zt;	
		double	Apmax=F1*AK1+F2*AK2;	
			
		int	B1=70;	
		int	B2=	(int)	floor(77+0.036*(Ac-236)+0.5);						//	nint()	in	F95	
		int	B4=	(int)	floor((delzmaxt-delz140t+Apmax*SL50t+140*delzSLt)/(SL50t+delzSLt)+0.5);	//	nint()	in	F95	
		int	B3=(Ac-B4);	
		int	B5=(Ac-B2);	
		int	B6=(Ac-B1);	
		int	Bb=int(Apmax+0.5);	//	nint()	in	F95	
		int	Ba=int(Ac-Apmax+0.5);	//	nint()	in	F95	
			
		//	Calculate	values	of	sigz,	delz,	Fn,	Fz	for	give	Ap	values	
		for	(int	i=Amin;	i<=Amax;	i++)	{	
				//	Peak	Regions	
				if	((i>=B2	&&	i<=B3)	||	(i>=B4	&&	i<=B5))	{	
						if	(i>Ac/2.0)	{	
								delz[i]=delz140t+delzSLt*(i-140.0);	
								sigz[i]=sigz140t+sigzSLt*(i-140.0);	
								Fz[i]=Fz140t+FzSLt*(i-140.0);	
								Fn[i]=Fn140t+FzSLt*(i-140.0);	
						}	else	if	(i<Ac/2.0)	{	
								delz[i]=-1*delz140t+delzSLt*(i-(Ac-140));	
								sigz[i]=sigz140t-sigzSLt*(i-(Ac-140));	
								Fz[i]=Fz140t-FzSLt*(i-(Ac-140));	
								Fn[i]=Fn140t-FzSLt*(i-(Ac-140));	
						}	
						//	Fn(i)=Fn140t	
				}	
		}	
			
		for	(int	i=Amin;	i<=Amax;	i++)	{	
				//	Near	Symmetry	Region	
				if	(i>B3	&&	i<B4)	{	
						Fn[i]=1.;	
						Fz[i]=1.;	
						if	(i>B3	&&	i<=Ba)	{	
								delz[i]=delz[B3]-SL50t*(i-B3);	
								sigz[i]=sigz50t;	
						}	else	if	(i>Ba	&&	i<Bb)	{	
								delz[i]=delz[Ba]+(i-Ba)*(2.0*delz[Ba])/(Ba-Bb);	
								sigz[i]=sigz140t-sigzSLt*(140-Bb);	
						}	else	if	(i>=Bb	&&	i<B4)	{	

								delz[i]=delz[B4]+SL50t*(B4-i);	
								sigz[i]=sigz50t;	
						}	
				}	
		}	
			
		for	(int	i=Amin;	i<=Amax;	i++)	{	
				//	Wing	Regions	
				if	((i>B1	&&	i<B2)	||	(i>B5	&&	i<B6))	{	
						if	(i>Ac/2.0)	{	
								delz[i]=delz[B5]-delzSLWt*(i-B5);	
								sigz[i]=sigz[B5]+sigzSLWt*(i-B5);	
								Fz[i]=Fz140t+FzSLWt*(i-B5);	
								Fn[i]=Fn140t+FnSLWt*(i-B5);	
						}	else	if	(i<Ac/2.0)	{	
								delz[i]=delz[B2]+delzSLWt*(B2-i);	
								sigz[i]=sigz[B5]+sigzSLWt*(B2-i);	
								Fz[i]=Fz140t+FzSLWt*(B2-i);	
								Fn[i]=Fn140t+FnSLWt*(B2-i);	
						}	
				}	
					
				//	Far	Wing	Regions	
				if	(i<=B1	||	i>=B6)	{	
						if	(i>Ac/2.0)	{	
								delz[i]=delz[B5];	
								sigz[i]=sigz[B5];	
								Fz[i]=Fz140t;	
								Fn[i]=Fn140t;	
						}	else	if	(i<Ac/2.0)	{	
								delz[i]=delz[B2];	
								sigz[i]=sigz[B5];	
								Fz[i]=Fz140t;	
								Fn[i]=Fn140t;	
						}	
				}	
		}	
			
		//--	save	Wahl	parameters	
		double	x	=	float(Zt)/Ac;	
		for	(int	i=Amin;	i<=Amax;	i++)	{	
				Z0[i]			=	(x*i+delz[i]);	
				sZ0[i]		=	sigz[i];	
				FZZ0[i]	=	Fz[i];	
				FNZ0[i]	=	Fn[i];	
				//				FZZ0[i]	=	1.0;	
				//				FNZ0[i]	=	1.0;	
				//				cout	<<	i	<<	"	"	<<	Z0[i]	<<	"	"	<<	sZ0[i]	<<	"\n";	

		}	
			
		//--	Find	true	(Zmin,	Zmax)	
		Zmin	=	(int)	floor(Z0[Amin]+0.5)-dZ;	
		Zmax	=	(int)	floor(Z0[Amax]+0.5)+dZ;	
			
	
			
}	
	

